The Nitrogen Cycle: Processes, Players, and Human Impact

31 Aug.,2022

 

nitrosomonas converts

Nitrogen gas (N2) makes up nearly 80% of the Earth's atmosphere, yet nitrogen is often the nutrient that limits primary production in many ecosystems. Why is this so? Because plants and animals are not able to use nitrogen gas in that form. For nitrogen to be available to make proteins, DNA, and other biologically important compounds, it must first be converted into a different chemical form. The process of converting N2 into biologically available nitrogen is called nitrogen fixation. N2 gas is a very stable compound due to the strength of the triple bond between the nitrogen atoms, and it requires a large amount of energy to break this bond. The whole process requires eight electrons and at least sixteen ATP molecules (Figure 2). As a result, only a select group of prokaryotes are able to carry out this energetically demanding process. Although most nitrogen fixation is carried out by prokaryotes, some nitrogen can be fixed abiotically by lightning or certain industrial processes, including the combustion of fossil fuels.


Figure 2: Chemical reaction of nitrogen fixation

© 2010 All rights reserved.


Figure 3: Nitrogen-fixing nodules on a clover plant root

© 2010 All rights reserved.

Rhizobium, which are nitrogen-fixing bacteria. This signal attracts the bacteria to the roots, and a very complex series of events then occurs to initiate uptake of the bacteria into the root and trigger the process of nitrogen fixation in nodules that form on the roots (Figure 3).

Some nitrogen-fixing organisms are free-living while others are symbiotic nitrogen-fixers, which require a close association with a host to carry out the process. Most of the symbiotic associations are very specific and have complex mechanisms that help to maintain the symbiosis. For example, root exudates from legume plants (e.g., peas, clover, soybeans) serve as a signal to certain species of, which are nitrogen-fixing bacteria. This signal attracts the bacteria to the roots, and a very complex series of events then occurs to initiate uptake of the bacteria into the root and trigger the process of nitrogen fixation in nodules that form on the roots (Figure 3).

Some of these bacteria are aerobic, others are anaerobic; some are phototrophic, others are chemotrophic (i.e., they use chemicals as their energy source instead of light) (Table 1). Although there is great physiological and phylogenetic diversity among the organisms that carry out nitrogen fixation, they all have a similar enzyme complex called nitrogenase that catalyzes the reduction of N2 to NH3 (ammonia), which can be used as a genetic marker to identify the potential for nitrogen fixation. One of the characteristics of nitrogenase is that the enzyme complex is very sensitive to oxygen and is deactivated in its presence. This presents an interesting dilemma for aerobic nitrogen-fixers and particularly for aerobic nitrogen-fixers that are also photosynthetic since they actually produce oxygen. Over time, nitrogen-fixers have evolved different ways to protect their nitrogenase from oxygen. For example, some cyanobacteria have structures called heterocysts that provide a low-oxygen environment for the enzyme and serves as the site where all the nitrogen fixation occurs in these organisms. Other photosynthetic nitrogen-fixers fix nitrogen only at night when their photosystems are dormant and are not producing oxygen.

Genes for nitrogenase are globally distributed and have been found in many aerobic habitats (e.g., oceans, lakes, soils) and also in habitats that may be anaerobic or microaerophilic (e.g., termite guts, sediments, hypersaline lakes, microbial mats, planktonic crustaceans) (Zehr et al. 2003). The broad distribution of nitrogen-fixing genes suggests that nitrogen-fixing organisms display a very broad range of environmental conditions, as might be expected for a process that is critical to the survival of all life on Earth.


Table 1: Representative prokaryotes known to carry out nitrogen fixation

© 2010 .