What is unit test introduction?

12 Dec.,2023

 

What is Unit Testing?

Unit Testing is a type of software testing where individual units or components of a software are tested. The purpose is to validate that each unit of the software code performs as expected. Unit Testing is done during the development (coding phase) of an application by the developers. Unit Tests isolate a section of code and verify its correctness. A unit may be an individual function, method, procedure, module, or object.

In SDLC, STLC, V Model, Unit testing is first level of testing done before integration testing. Unit testing is a WhiteBox testing technique that is usually performed by the developer. Though, in a practical world due to time crunch or reluctance of developers to tests, QA engineers also do unit testing.

Unit Testing Video Explanation

Why perform Unit Testing?

Unit Testing is important because software developers sometimes try saving time doing minimal unit testing and this is myth because inappropriate unit testing leads to high cost Defect fixing during System Testing, Integration Testing and even Beta Testing after application is built. If proper unit testing is done in early development, then it saves time and money in the end.

Here, are the key reasons to perform unit testing in software engineering:

Unit Testing Levels

  1. Unit tests help to fix bugs early in the development cycle and save costs.
  2. It helps the developers to understand the testing code base and enables them to make changes quickly
  3. Good unit tests serve as project documentation
  4. Unit tests help with code re-use. Migrate both your code and your tests to your new project. Tweak the code until the tests run again.

How to execute Unit Testing

In order to execute Unit Tests, developers write a section of code to test a specific function in software application. Developers can also isolate this function to test more rigorously which reveals unnecessary dependencies between function being tested and other units so the dependencies can be eliminated. Developers generally use UnitTest framework to develop automated test cases for unit testing.

Unit Testing is of two types

  • Manual
  • Automated

Unit testing is commonly automated but may still be performed manually. Software Engineering does not favor one over the other but automation is preferred. A manual approach to unit testing may employ a step-by-step instructional document.

Under the automated approach-

  • A developer writes a section of code in the application just to test the function. They would later comment out and finally remove the test code when the application is deployed.
  • A developer could also isolate the function to test it more rigorously. This is a more thorough unit testing practice that involves copy and paste of code to its own testing environment than its natural environment. Isolating the code helps in revealing unnecessary dependencies between the code being tested and other units or data spaces in the product. These dependencies can then be eliminated.
  • A coder generally uses a UnitTest Framework to develop automated test cases. Using an automation framework, the developer codes criteria into the test to verify the correctness of the code. During execution of the test cases, the framework logs failing test cases. Many frameworks will also automatically flag and report, in summary, these failed test cases. Depending on the severity of a failure, the framework may halt subsequent testing.
  • The workflow of Unit Testing is 1) Create Test Cases 2) Review/Rework 3) Baseline 4) Execute Test Cases.

Unit Testing Techniques

The Unit Testing Techniques are mainly categorized into three parts which are Black box testing that involves testing of user interface along with input and output, White box testing that involves testing the functional behaviour of the software application and Gray box testing that is used to execute test suites, test methods, test cases and performing risk analysis.

Code coverage techniques used in Unit Testing are listed below:

  • Statement Coverage
  • Decision Coverage
  • Branch Coverage
  • Condition Coverage
  • Finite State Machine Coverage

For more in refer https://www.guru99.com/code-coverage.html

Unit Test Example: Mock Objects

Unit testing relies on mock objects being created to test sections of code that are not yet part of a complete application. Mock objects fill in for the missing parts of the program.

For example, you might have a function that needs variables or objects that are not created yet. In unit testing, those will be accounted for in the form of mock objects created solely for the purpose of the unit testing done on that section of code.

Unit Testing Tools

There are several automated unit test software available to assist with unit testing. We will provide a few examples below:

  1. Junit: Junit is a free to use testing tool used for Java programming language.  It provides assertions to identify test method. This tool test data first and then inserted in the piece of code.
  2. NUnit:  NUnit is widely used unit-testing framework use for all .net languages.  It is an open source tool which allows writing scripts manually. It supports data-driven tests which can run in parallel.
  3. JMockit:  JMockit is open source Unit testing tool.  It is a code coverage tool with line and path metrics. It allows mocking API with recording and verification syntax. This tool offers Line coverage, Path Coverage, and Data Coverage.
  4. EMMA:  EMMA is an open-source toolkit for analyzing and reporting code written in Java language. Emma support coverage types like method, line, basic block. It is Java-based so it is without external library dependencies and can access the source code.
  5. PHPUnit: PHPUnit is a unit testing tool for PHP programmer. It takes small portions of code which is called units and test each of them separately.  The tool also allows developers to use pre-define assertion methods to assert that a system behave in a certain manner. 

Those are just a few of the available unit testing tools. There are lots more, especially for C languages and Java, but you are sure to find a unit testing tool for your programming needs regardless of the language you use.

Test Driven Development (TDD) & Unit Testing

Unit testing in TDD involves an extensive use of testing frameworks. A unit test framework is used in order to create automated unit tests. Unit testing frameworks are not unique to TDD, but they are essential to it. Below we look at some of what TDD brings to the world of unit testing:

  • Tests are written before the code
  • Rely heavily on testing frameworks
  • All classes in the applications are tested
  • Quick and easy integration is made possible

Unit Testing Myth

Myth: It requires time, and I am always overscheduled
My code is rock solid! I do not need unit tests.

Myths by their very nature are false assumptions. These assumptions lead to a vicious cycle as follows –

Truth is Unit testing increase the speed of development.

Programmers think that Integration Testing will catch all errors and do not execute the unit test. Once units are integrated, very simple errors which could have very easily found and fixed in unit tested take a very long time to be traced and fixed.

Unit Testing Advantage

  • Developers looking to learn what functionality is provided by a unit and how to use it can look at the unit tests to gain a basic understanding of the unit API.
  • Unit testing allows the programmer to refactor code at a later date, and make sure the module still works correctly (i.e. Regression testing). The procedure is to write test cases for all functions and methods so that whenever a change causes a fault, it can be quickly identified and fixed.
  • Due to the modular nature of the unit testing, we can test parts of the project without waiting for others to be completed.

Unit Testing Disadvantages

  • Unit testing can’t be expected to catch every error in a program. It is not possible to evaluate all execution paths even in the most trivial programs
  • Unit testing by its very nature focuses on a unit of code. Hence it can’t catch integration errors or broad system level errors.

It’s recommended unit testing be used in conjunction with other testing activities.

Unit Testing Best Practices

  • Unit Test cases should be independent. In case of any enhancements or change in requirements, unit test cases should not be affected.
  • Test only one code at a time.
  • Follow clear and consistent naming conventions for your unit tests
  • In case of a change in code in any module, ensure there is a corresponding unit Test Case for the module, and the module passes the tests before changing the implementation
  • Bugs identified during unit testing must be fixed before proceeding to the next phase in SDLC
  • Adopt a “test as your code” approach. The more code you write without testing, the more paths you have to check for errors.

Summary

  • UNIT TESTING is defined as a type of software testing where individual units or components of a software are tested.
  • As you can see, there can be a lot involved in unit testing. It can be complex or rather simple depending on the application being tested and the testing strategies, tools and philosophies used. Unit testing is always necessary on some level. That is a certainty.

Software testing method by which individual units of source code are validated

In computer programming, unit testing is a software testing method by which individual units of source code—sets of one or more computer program modules together with associated control data, usage procedures, and operating procedures—are tested to determine whether they are fit for use.[1] It is a standard step in development and implementation approaches such as Agile.

History

[

edit

]

Before unit testing, capture and replay testing tools were the norm. In 1997, Kent Beck and Erich Gamma developed and released JUnit, a unit test framework that became popular with Java developers.[2] Google embraced automated testing around 2005–2006.[3]

Unit

[

edit

]

Unit tests are typically automated tests written and run by software developers to ensure that a section of an application (known as the "unit") meets its design and behaves as intended.[4]

Procedural programming

[

edit

]

In procedural programming, a unit could be an entire module, but it is more commonly an individual function or procedure.

Object-oriented programming

[

edit

]

In object-oriented programming, a unit is often an entire interface, such as a class, or an individual method.[5] By writing tests first for the smallest testable units, then the compound behaviors between those, one can build up comprehensive tests for complex applications.[4]

Testing criteria

[

edit

]

During development, a software developer may code criteria, or results that are known to be good, into the test to verify the unit's correctness. During test case execution, frameworks log tests that fail any criterion and report them in a summary. For this, the most commonly used approach is test - function - expected value.

Test case

[

edit

]

To isolate issues that may arise, each test case should be tested independently. Substitutes such as method stubs, mock objects,[6] fakes, and test harnesses can be used to assist testing a module in isolation.

Parameterized test

[

edit

]

Parameterized tests are a technique that claims to shorten the process of writing and maintaining unit tests . Parameterized tests allow the execution of one test multiple times with different input sets, thus reducing test code duplication. Unlike traditional unit tests, which are usually closed methods and test invariant conditions, parameterized tests take any set of parameters. Parameterized tests are supported by TestNG, JUnit and its .Net counterparts, XUnit and NUnit, as well as in various JavaScript test frameworks.[8]

Suitable parameters for the unit tests may be supplied manually or in some cases are automatically generated by the test framework. In recent years support was added for writing more powerful (unit) tests, leveraging the concept of theories, test cases that execute the same steps, but using test data generated at runtime, unlike regular parameterized tests that use the same execution steps with input sets that are pre-defined.[9][10][11]

Agile

[

edit

]

In the Agile development process, unit testing is done per user story and comes in the later half of the sprint after requirements gathering and development are complete. Typically, the developers or other members from the development team, such as consultants, will write step-by-step 'test scripts' for the developers to execute in the tool. Test scripts are generally written to prove the effective and technical operation of specific developed features in the tool, as opposed to full fledged business processes that would be interfaced by the end user, which is typically done during user acceptance testing. If the test-script can be fully executed from start to finish without incident, the unit test is considered to have "passed", otherwise errors are noted and the user story is moved back to development in an 'in-progress' state. User stories that successfully pass unit tests are moved on to the final steps of the sprint - Code review, peer review, and then lastly a 'show-back' session demonstrating the developed tool to stakeholders.

Advantages

[

edit

]

The goal of unit testing is to isolate each part of the program and show that the individual parts are correct.[1] A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it affords several benefits.

Early detection of problems in the development cycle

[

edit

]

Unit testing finds problems early in the development cycle. This includes both bugs in the programmer's implementation and flaws or missing parts of the specification for the unit. The process of writing a thorough set of tests forces the author to think through inputs, outputs, and error conditions, and thus more crisply define the unit's desired behavior.

Reduced cost

[

edit

]

The cost of finding a bug before coding begins or when the code is first written is considerably lower than the cost of detecting, identifying, and correcting the bug later. Bugs in released code may also cause costly problems for the end-users of the software.[12][13][14] Code can be impossible or difficult to unit test if poorly written, thus unit testing can force developers to structure functions and objects in better ways.

Test-driven development

[

edit

]

In test-driven development (TDD), which is frequently used in both extreme programming and scrum, unit tests are created before the code itself is written. When the tests pass, that code is considered complete. The same unit tests are run against that function frequently as the larger code base is developed either as the code is changed or via an automated process with the build. If the unit tests fail, it is considered to be a bug either in the changed code or the tests themselves. The unit tests then allow the location of the fault or failure to be easily traced. Since the unit tests alert the development team of the problem before handing the code off to testers or clients, potential problems are caught early in the development process.

More frequent releases

[

edit

]

Unit testing enables more frequent releases in software development. By testing individual components in isolation, developers can quickly identify and address issues, leading to faster iteration and release cycles.[15] This approach helps ensure the stability and reliability of the code, allowing organizations to deliver timely updates and enhancements to users. Unit testing promotes a more structured and systematic development process, resulting in better assessment of product quality and a more agile development.[16]

Allows for code refactoring

[

edit

]

Unit testing allows the programmer to refactor code or upgrade system libraries at a later date, and make sure the module still works correctly (e.g., in regression testing). The procedure is to write test cases for all functions and methods so that whenever a change causes a fault, it can be identified quickly.

Detects changes which may break a design contract

[

edit

]

Unit tests detect changes which may break a design contract.

Reduce uncertainty

[

edit

]

Unit testing may reduce uncertainty in the units themselves and can be used in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum of its parts, integration testing becomes much easier.[citation needed]

Documentation of system behavior

[

edit

]

Unit testing provides a sort of living documentation of the system. Developers looking to learn what functionality is provided by a unit, and how to use it, can look at the unit tests to gain a basic understanding of the unit's interface (API).[citation needed]

Unit test cases embody characteristics that are critical to the success of the unit. These characteristics can indicate appropriate/inappropriate use of a unit as well as negative behaviors that are to be trapped by the unit. A unit test case, in and of itself, documents these critical characteristics, although many software development environments do not rely solely upon code to document the product in development.[citation needed]

When software is developed using a test-driven approach, the combination of writing the unit test to specify the interface plus the refactoring activities performed after the test has passed, may take the place of formal design. Each unit test can be seen as a design element specifying classes, methods, and observable behavior.[citation needed]

Limitations and disadvantages

[

edit

]

Testing will not catch every error in the program, because it cannot evaluate every execution path in any but the most trivial programs. This problem is a superset of the halting problem, which is undecidable. The same is true for unit testing. Additionally, unit testing by definition only tests the functionality of the units themselves. Therefore, it will not catch integration errors or broader system-level errors (such as functions performed across multiple units, or non-functional test areas such as performance). Unit testing should be done in conjunction with other software testing activities, as they can only show the presence or absence of particular errors; they cannot prove a complete absence of errors. To guarantee correct behavior for every execution path and every possible input, and ensure the absence of errors, other techniques are required, namely the application of formal methods to proving that a software component has no unexpected behavior.[citation needed]

An elaborate hierarchy of unit tests does not equal integration testing. Integration with peripheral units should be included in integration tests, but not in unit tests.[citation needed] Integration testing typically still relies heavily on humans testing manually; high-level or global-scope testing can be difficult to automate, such that manual testing often appears faster and cheaper.[citation needed]

Software testing is a combinatorial problem. For example, every Boolean decision statement requires at least two tests: one with an outcome of "true" and one with an outcome of "false". As a result, for every line of code written, programmers often need 3 to 5 lines of test code.[17] This obviously takes time and its investment may not be worth the effort. There are problems that cannot easily be tested at all – for example those that are nondeterministic or involve multiple threads. In addition, code for a unit test is as likely to be buggy as the code it is testing. Fred Brooks in The Mythical Man-Month quotes: "Never go to sea with two chronometers; take one or three."[18] Meaning, if two chronometers contradict, how do you know which one is correct?

Difficulty in setting up realistic and useful tests

[

edit

]

Another challenge related to writing the unit tests is the difficulty of setting up realistic and useful tests. It is necessary to create relevant initial conditions so the part of the application being tested behaves like part of the complete system. If these initial conditions are not set correctly, the test will not be exercising the code in a realistic context, which diminishes the value and accuracy of unit test results.[19]

Requires discipline throughout the development process

[

edit

]

To obtain the intended benefits from unit testing, rigorous discipline is needed throughout the software development process.

Requires version control

[

edit

]

It is essential to keep careful records not only of the tests that have been performed, but also of all changes that have been made to the source code of this or any other unit in the software. Use of a version control system is essential. If a later version of the unit fails a particular test that it had previously passed, the version-control software can provide a list of the source code changes (if any) that have been applied to the unit since that time.[citation needed]

Requires regular reviews

[

edit

]

It is also essential to implement a sustainable process for ensuring that test case failures are reviewed regularly and addressed immediately.[20] If such a process is not implemented and ingrained into the team's workflow, the application will evolve out of sync with the unit test suite, increasing false positives and reducing the effectiveness of the test suite.

Limitations for embedded system software

[

edit

]

Unit testing embedded system software presents a unique challenge: Because the software is being developed on a different platform than the one it will eventually run on, you cannot readily run a test program in the actual deployment environment, as is possible with desktop programs.[21]

Limitations for testing integration with external systems

[

edit

]

Unit tests tend to be easiest when a method has input parameters and some output. It is not as easy to create unit tests when a major function of the method is to interact with something external to the application. For example, a method that will work with a database might require a mock up of database interactions to be created, which probably won't be as comprehensive as the real database interactions.[22][better source needed]

Examples

[

edit

]

Java

[

edit

]

Here is a set of test cases in Java that specify a number of elements of the implementation. First, that there must be an interface called Adder, and an implementing class with a zero-argument constructor called AdderImpl. It goes on to assert that the Adder interface should have a method called add, with two integer parameters, which returns another integer. It also specifies the behaviour of this method for a small range of values over a number of test methods.

import static

org.junit.Assert.assertEquals

;

import

org.junit.Test

;

public

class

TestAdder

{

// can it add the positive numbers 1 and 1?

@Test

public

void

testSumPositiveNumbersOneAndOne

()

{

Adder

adder

=

new

AdderImpl

();

assertEquals

(

2

,

adder

.

add

(

1

,

1

));

}

// can it add the positive numbers 1 and 2?

@Test

public

void

testSumPositiveNumbersOneAndTwo

()

{

Adder

adder

=

new

AdderImpl

();

assertEquals

(

3

,

adder

.

add

(

1

,

2

));

}

// can it add the positive numbers 2 and 2?

@Test

public

void

testSumPositiveNumbersTwoAndTwo

()

{

Adder

adder

=

new

AdderImpl

();

assertEquals

(

4

,

adder

.

add

(

2

,

2

));

}

// is zero neutral?

@Test

public

void

testSumZeroNeutral

()

{

Adder

adder

=

new

AdderImpl

();

assertEquals

(

0

,

adder

.

add

(

0

,

0

));

}

// can it add the negative numbers -1 and -2?

@Test

public

void

testSumNegativeNumbers

()

{

Adder

adder

=

new

AdderImpl

();

assertEquals

(

-

3

,

adder

.

add

(

-

1

,

-

2

));

}

// can it add a positive and a negative?

@Test

public

void

testSumPositiveAndNegative

()

{

Adder

adder

=

new

AdderImpl

();

assertEquals

(

0

,

adder

.

add

(

-

1

,

1

));

}

// how about larger numbers?

@Test

public

void

testSumLargeNumbers

()

{

Adder

adder

=

new

AdderImpl

();

assertEquals

(

2222

,

adder

.

add

(

1234

,

988

));

}

}

In this case the unit tests, having been written first, act as a design document specifying the form and behaviour of a desired solution, but not the implementation details, which are left for the programmer. Following the "do the simplest thing that could possibly work" practice, the easiest solution that will make the test pass is shown below.

interface

Adder

{

int

add

(

int

a

,

int

b

);

}

class

AdderImpl

implements

Adder

{

public

int

add

(

int

a

,

int

b

)

{

return

a

+

b

;

}

}

As executable specifications

[

edit

]

Using unit-tests as a design specification has one significant advantage over other design methods: The design document (the unit-tests themselves) can itself be used to verify the implementation. The tests will never pass unless the developer implements a solution according to the design.

Unit testing lacks some of the accessibility of a diagrammatic specification such as a UML diagram, but they may be generated from the unit test using automated tools. Most modern languages have free tools (usually available as extensions to IDEs). Free tools, like those based on the xUnit framework, outsource to another system the graphical rendering of a view for human consumption.

Applications

[

edit

]

Extreme programming

[

edit

]

Unit testing is the cornerstone of extreme programming, which relies on an automated unit testing framework. This automated unit testing framework can be either third party, e.g., xUnit, or created within the development group.

Extreme programming uses the creation of unit tests for test-driven development. The developer writes a unit test that exposes either a software requirement or a defect. This test will fail because either the requirement isn't implemented yet, or because it intentionally exposes a defect in the existing code. Then, the developer writes the simplest code to make the test, along with other tests, pass.

Most code in a system is unit tested, but not necessarily all paths through the code. Extreme programming mandates a "test everything that can possibly break" strategy, over the traditional "test every execution path" method. This leads developers to develop fewer tests than classical methods, but this isn't really a problem, more a restatement of fact, as classical methods have rarely ever been followed methodically enough for all execution paths to have been thoroughly tested.[citation needed] Extreme programming simply recognizes that testing is rarely exhaustive (because it is often too expensive and time-consuming to be economically viable) and provides guidance on how to effectively focus limited resources.

Crucially, the test code is considered a first class project artifact in that it is maintained at the same quality as the implementation code, with all duplication removed. Developers release unit testing code to the code repository in conjunction with the code it tests. Extreme programming's thorough unit testing allows the benefits mentioned above, such as simpler and more confident code development and refactoring, simplified code integration, accurate documentation, and more modular designs. These unit tests are also constantly run as a form of regression test.

Unit testing is also critical to the concept of Emergent Design. As emergent design is heavily dependent upon refactoring, unit tests are an integral component.[23]

Unit testing frameworks

[

edit

]

Unit testing frameworks are most often third-party products that are not distributed as part of the compiler suite. They help simplify the process of unit testing, having been developed for a wide variety of languages.

It is generally possible to perform unit testing without the support of a specific framework by writing client code that exercises the units under test and uses assertions, exception handling, or other control flow mechanisms to signal failure. Unit testing without a framework is valuable in that there is a barrier to entry for the adoption of unit testing; having scant unit tests is hardly better than having none at all, whereas once a framework is in place, adding unit tests becomes relatively easy.[24] In some frameworks many advanced unit test features are missing or must be hand-coded.

Language-level unit testing support

[

edit

]

Some programming languages directly support unit testing. Their grammar allows the direct declaration of unit tests without importing a library (whether third party or standard). Additionally, the boolean conditions of the unit tests can be expressed in the same syntax as boolean expressions used in non-unit test code, such as what is used for if and while statements.

Languages with built-in unit testing support include:

Languages with standard unit testing framework support include:

Some languages do not have built-in unit-testing support but have established unit testing libraries or frameworks. These languages include:

See also

[

edit

]

References

[

edit

]

Further reading

[

edit

]

  • Feathers, Michael C. (2005). Working Effectively with Legacy Code. Upper Saddle River, NJ: Prentice Hall Professional Technical Reference. ISBN 978-0131177055.

  • Gulati, Shekhar; Sharma, Rahul (2017). Java Unit Testing with JUnit 5. Apress.

What is unit test introduction?

Unit testing

If you want to learn more, please visit our website Philips Bvp384 LED Flood Light, Philips LED Track Light, 4w Surface Mount LED Spotlight.